Web Search

Spidering

Spiders (Robots/Bots/Crawlers)

Start with a comprehensive set of root
URL’s from which to start the search.
Follow all links on these pages recursively
to find additional pages.

Index all novel found pages in an inverted
index as they are encountered.

May allow users to directly submit pages to
be indexed (and crawled from).

Search Strategies

Breadth-first Search

Search Strategies (cont)

Depth-first Search

Search Strategy Trade-Off’s

Breadth-first explores uniformly outward
from the root page but requires memory of
all nodes on the previous level (exponential
in depth). Standard spidering method.
Depth-first requires memory of only depth
times branching-factor (linear in depth) but
gets “lost” pursuing a single thread.

Both strategies implementable using a
queue of links (URL’s).

Avoiding Page Duplication

Must detect when revisiting a page that has
already been spidered (web is a graph not a tree).
Must efficiently index visited pages to allow rapid
recognition test.
— Tree indexing (e.g. trie)

Hashtable
Index page using URL as a key.

Canonicalize URL by using “redirected” URL from
URLConnection

Not detect duplicated or mirrored pages.
Index page using textual content as a key.
— Requires first downloading page.

Spidering Algorithm

Initialize queue (Q) with initial set of known URL’s.
Until Q empty or page or time limit exhausted:
Pop URL, L, from front of Q.
If L is not to an HTML page (.gif, .jpeg, .ps, .pdf, .ppt...)
continue loop.
If already visited L, continue loop.
Download page, P, for L.
If cannot download P (e.g. 404 error, robot excluded)
continue loop.
Index P (e.g. add to inverted index or store cached copy).
Parse P to obtain list of new links N.
Append N to the end of Q.

Queueing Strategy

* How new links added to the queue
determines search strategy.

* FIFO (append to end of Q) gives breadth-
first search.

* LIFO (add to front of Q) gives depth-first
search.

* Heuristically ordering the Q gives a
“focused crawler” that directs its search
towards “interesting” pages.

Restricting Spidering

* Restrict spider to a particular site.
— Remove links to other sites from Q.

* Restrict spider to a particular directory.
— Remove links not in the specified directory.

» Obey page-owner restrictions (robot
exclusion).

Link Extraction

Must find all links in a page and extract
URLs.

—
— <frame src="site-index.htm[”>

Must complete relative URL’s using current
page URL:
 to
http://www.cs.utexas.edu/users/mooney/ir-course/proj3

— <ahref="../cs343/syllabus.html”> to
http://www.cs.utexas.edu/users/mooney/cs343/syllabus.html

URL Syntax

A URL has the following syntax:
— <scheme>://<authority><path>?<query>#<fragment>
An authority has the syntax:
<host>:<port-number>
A query passes variable values from an HTML
form and has the syntax:
<variable>=<value>&<variable>=<value>...
A fragment is also called a reference or a ref and
is a pointer within the document to a point
specified by an anchor tag of the form:
<A NAME="“<fragment>">

Java Spider

Spidering code in ir.webutils package.
Generic spider in Spider class.
Does breadth-first crawl from a start URL and
saves copy of each page in a local directory.
This directory can then be indexed and searched
using VSR InvertedIndex.
Main method parameters:
-u <start-URL>
— -d <save-directory>
-¢ <page-count-limit>

Java Spider (cont.)

» Robot Exclusion can be invoked to prevent
crawling restricted sites/pages.
— -safe

» Specialized classes also restrict search:
— SiteSpider: Restrict to initial URL host.

— DirectorySpider: Restrict to below initial URL
directory.

Spider Java Classes

HTMLPage
HTMLPageRetriever link
— getHTMLPage() text

outLinks¢—

LinkExtractor

|5 page
extract(——]

Link Canonicalization

» Canonicalize URL by using “redirected”
URL returned by an established Java
URLConnection.

* Internal page fragments (ref’s) removed:
— http://www.cs.utexas.edu/users/mooney/welcome. html#courses
— http://www.cs.utexas.edu/users/mooney/welcome.html

Link Extraction in Java

+ Java Swing contains an HTML parser.
* Parser uses “call-back” methods.
 Pass parser an object that has these methods:

HandleText(char[] text, int position)

— HandleStartTag(HTML.Tag tag, MutableAttributeSet
attributes, int position)

— HandleEndTag(HTML.Tag tag, int position)
HandleSimpleTag (HTML.Tag tag,
MutableAttributeSet attributes, int position)
» When parser encounters a tag or intervening text,
it calls the appropriate method of this object.

Link Extraction in Java (cont.)

» In HandleStartTag, if it is an “A” tag, take
the HREF attribute value as an initial URL.
* Complete the URL using the base URL:
—new URL(URL baseURL, String relativeURL)
— Fails if baseURL ends in a directory name but
this is not indicated by a final “/”
— Append a “/” to baseURL if it does not end in a
file name with an extension (and therefore
presumably is a directory).

Cached File with Base URL

Store copy of page in a local directory for
eventual indexing for retrieval.

* BASE tag in the header section of an
HTML file changes the base URL for all
relative pointers:

— <BASE HREF=“<base-URL>">

This is specifically included in HTML for
use in documents that were moved from
their original location.

Java Spider Trace

* As a simple demo, SiteSpider was used to collect
100 pages starting at: UT CS Faculty Page

* See trace at:
http://www.cs.utexas.edu/users/mooney/ir-course/spider-trace. txt

* A larger crawl from the same page was used to
assemble 800 pages that are cached at:
— /u/mooney/ir-code/corpora/cs-faculty/

Servlet Web Interface Demo

* Web interface to using VSR to search
directories of cached HTML files is at:
http://www.cs.utexas.edu/users/mooney/ir-course/search.html
* The Java Servlet code supporting this demo is
at:

— /u/ml/servlets/irs/Search.java

Anchor Text Indexing

Extract anchor text (between <a> and) of

each link followed.

* Anchor text is usually descriptive of the document
to which it points.

+ Add anchor text to the content of the destination
page to provide additional relevant keyword
indices.

* Used by Google:

Evil Empire

IBM

Anchor Text Indexing (cont)

+ Helps when descriptive text in destination page is
embedded in image logos rather than in accessible
text.

* Many times anchor text is not useful:

— “click here”

* Increases content more for popular pages with
many in-coming links, increasing recall of these
pages.

* May even give higher weights to tokens from
anchor text.

Robot Exclusion

» Web sites and pages can specify that robots
should not crawl/index certain areas.

* Two components:
— Robots Exclusion Protocol: Site wide
specification of excluded directories.
— Robots META Tag: Individual document tag to
exclude indexing or following links.

Robots Exclusion Protocol

« Site administrator puts a “robots.txt” file at
the root of the host’s web directory.
— http://www.ebay.com/robots.txt
— http://www.cnn.com/robots.txt

« File is a list of excluded directories for a
given robot (user-agent).
— Exclude all robots from the entire site:

User-agent: *
Disallow: /

Robot Exclusion Protocol Examples

» Exclude specific directories:

User-agent: *

Disallow: /tmp/

Disallow: /cgi-bin/
Disallow: /users/paranoid/

» Exclude a specific robot:

User-agent: GoogleBot
Disallow: /

» Allow a specific robot:

User-agent: GoogleBot
Disallow:

User-agent: *
Disallow: / %

Robot Exclusion Protocol Details

* Only use blank lines to separate different
User-agent disallowed directories.

* One directory per “Disallow” line.
» No regex patterns in directories.

Robots META Tag

¢ Include META tag in HEAD section of a
specific HTML document.
— <meta name="robots” content="none’>
» Content value is a pair of values for two
aspects:
—index | noindex: Allow/disallow indexing of
this page.
— follow | nofollow: Allow/disallow following
links on this page.

Robots META Tag (cont)

Special values:

— all = index,follow

— none = noindex,nofollow

Examples:

<meta name="robots” content="noindex,follow”>

<meta name="robots” content="index,nofollow”>

<meta name="robots” content="none”>

Robot Exclusion Issues

META tag is newer and less well-adopted than
“robots.txt”.

Standards are conventions to be followed by
“good robots.”

Companies have been prosecuted for “disobeying”
these conventions and “trespassing” on private
cyberspace.

“Good robots™ also try not to “hammer” individual
sites with lots of rapid requests.

— “Denial of service” attack.

Multi-Threaded Spidering

Bottleneck is network delay in downloading
individual pages.

Best to have multiple threads running in parallel
each requesting a page from a different host.

Distribute URL’s to threads to guarantee equitable
distribution of requests across different hosts to
maximize through-put and avoid overloading any
single server.

Early Google spider had multiple co-ordinated
crawlers with about 300 threads each, together
able to download over 100 pages per second.

10

Directed/Focused Spidering

* Sort queue to explore more “interesting”
pages first.

» Two styles of focus:
— Topic-Directed
— Link-Directed

Topic-Directed Spidering

Assume desired topic description or sample
pages of interest are given.

Sort queue of links by the similarity (e.g.
cosine metric) of their source pages and/or
anchor text to this topic description.

Preferentially explores pages related to a
specific topic.

Robosurfer assignment in Al course.

Link-Directed Spidering

Monitor links and keep track of in-degree

and out-degree of each page encountered.

 Sort queue to prefer popular pages with
many in-coming links (authorities).

* Sort queue to prefer summary pages with

many out-going links (hubs).

11

Keeping Spidered Pages Up to Date

Web is very dynamic: many new pages, updated
pages, deleted pages, etc.
Periodically check spidered pages for updates and
deletions:
Just look at header info (e.g. META tags on last update)
to determine if page has changed, only reload entire
page if needed.
Track how often each page is updated and
preferentially return to pages which are
historically more dynamic.
Preferentially update pages that are accessed more
often to optimize freshness of more popular pages.

12

