
1

1

Web Search

Spidering

2

Spiders (Robots/Bots/Crawlers)

• Start with a comprehensive set of root
URL’s from which to start the search.

• Follow all links on these pages recursively
to find additional pages.

• Index all novel found pages in an inverted
index as they are encountered.

• May allow users to directly submit pages to
be indexed (and crawled from).

3

Search Strategies

Breadth-first Search

2

4

Search Strategies (cont)

Depth-first Search

5

Search Strategy Trade-Off’s

• Breadth-first explores uniformly outward
from the root page but requires memory of
all nodes on the previous level (exponential
in depth). Standard spidering method.

• Depth-first requires memory of only depth
times branching-factor (linear in depth) but
gets “lost” pursuing a single thread.

• Both strategies implementable using a
queue of links (URL’s).

6

Avoiding Page Duplication

• Must detect when revisiting a page that has
already been spidered (web is a graph not a tree).

• Must efficiently index visited pages to allow rapid
recognition test.
– Tree indexing (e.g. trie)
– Hashtable

• Index page using URL as a key.
– Canonicalize URL by using “redirected” URL from

URLConnection
– Not detect duplicated or mirrored pages.

• Index page using textual content as a key.
– Requires first downloading page.

3

7

Spidering Algorithm

Initialize queue (Q) with initial set of known URL’s.
Until Q empty or page or time limit exhausted:

Pop URL, L, from front of Q.
If L is not to an HTML page (.gif, .jpeg, .ps, .pdf, .ppt…)

continue loop.
If already visited L, continue loop.
Download page, P, for L.
If cannot download P (e.g. 404 error, robot excluded)

continue loop.
Index P (e.g. add to inverted index or store cached copy).
Parse P to obtain list of new links N.
Append N to the end of Q.

8

Queueing Strategy

• How new links added to the queue
determines search strategy.

• FIFO (append to end of Q) gives breadth-
first search.

• LIFO (add to front of Q) gives depth-first
search.

• Heuristically ordering the Q gives a
“focused crawler” that directs its search
towards “interesting” pages.

9

Restricting Spidering

• Restrict spider to a particular site.
– Remove links to other sites from Q.

• Restrict spider to a particular directory.
– Remove links not in the specified directory.

• Obey page-owner restrictions (robot
exclusion).

4

10

Link Extraction

• Must find all links in a page and extract
URLs.
–

– <frame src=“site-index.html”>

• Must complete relative URL’s using current
page URL:
– to

http://www.cs.utexas.edu/users/mooney/ir-course/proj3

– to
http://www.cs.utexas.edu/users/mooney/cs343/syllabus.html

11

URL Syntax

• A URL has the following syntax:
– <scheme>://<authority><path>?<query>#<fragment>

• An authority has the syntax:
– <host>:<port-number>

• A query passes variable values from an HTML
form and has the syntax:
– <variable>=<value>&<variable>=<value>…

• A fragment is also called a reference or a ref and
is a pointer within the document to a point
specified by an anchor tag of the form:
– <A NAME=“<fragment>”>

12

Java Spider

• Spidering code in ir.webutils package.
• Generic spider in Spider class.
• Does breadth-first crawl from a start URL and

saves copy of each page in a local directory.
• This directory can then be indexed and searched

using VSR InvertedIndex.
• Main method parameters:

– -u <start-URL>
– -d <save-directory>
– -c <page-count-limit>

5

13

Java Spider (cont.)

• Robot Exclusion can be invoked to prevent
crawling restricted sites/pages.
– -safe

• Specialized classes also restrict search:
– SiteSpider: Restrict to initial URL host.

– DirectorySpider: Restrict to below initial URL
directory.

14

Spider Java Classes

HTMLPageRetriever
getHTMLPage()

LinkExtractor
page
extract()

String

Link
urlURL

HTMLPage
link
text
outLinks

15

Link Canonicalization

• Canonicalize URL by using “redirected”
URL returned by an established Java
URLConnection.

• Internal page fragments (ref’s) removed:
– http://www.cs.utexas.edu/users/mooney/welcome.html#courses

– http://www.cs.utexas.edu/users/mooney/welcome.html

6

16

Link Extraction in Java

• Java Swing contains an HTML parser.
• Parser uses “call-back” methods.
• Pass parser an object that has these methods:

– HandleText(char[] text, int position)
– HandleStartTag(HTML.Tag tag, MutableAttributeSet

attributes, int position)
– HandleEndTag(HTML.Tag tag, int position)
– HandleSimpleTag (HTML.Tag tag,

MutableAttributeSet attributes, int position)

• When parser encounters a tag or intervening text,
it calls the appropriate method of this object.

17

Link Extraction in Java (cont.)

• In HandleStartTag, if it is an “A” tag, take
the HREF attribute value as an initial URL.

• Complete the URL using the base URL:
– new URL(URL baseURL, String relativeURL)

– Fails if baseURL ends in a directory name but
this is not indicated by a final “/”

– Append a “/” to baseURL if it does not end in a
file name with an extension (and therefore
presumably is a directory).

18

Cached File with Base URL

• Store copy of page in a local directory for
eventual indexing for retrieval.

• BASE tag in the header section of an
HTML file changes the base URL for all
relative pointers:
– <BASE HREF=“<base-URL>”>

• This is specifically included in HTML for
use in documents that were moved from
their original location.

7

19

Java Spider Trace

• As a simple demo, SiteSpider was used to collect
100 pages starting at: UT CS Faculty Page

• See trace at:
http://www.cs.utexas.edu/users/mooney/ir-course/spider-trace.txt

• A larger crawl from the same page was used to
assemble 800 pages that are cached at:
– /u/mooney/ir-code/corpora/cs-faculty/

20

Servlet Web Interface Demo

• Web interface to using VSR to search
directories of cached HTML files is at:
– http://www.cs.utexas.edu/users/mooney/ir-course/search.html

• The Java Servlet code supporting this demo is
at:
– /u/ml/servlets/irs/Search.java

21

Anchor Text Indexing

• Extract anchor text (between <a> and) of
each link followed.

• Anchor text is usually descriptive of the document
to which it points.

• Add anchor text to the content of the destination
page to provide additional relevant keyword
indices.

• Used by Google:
– Evil Empire

– IBM

8

22

Anchor Text Indexing (cont)

• Helps when descriptive text in destination page is
embedded in image logos rather than in accessible
text.

• Many times anchor text is not useful:
– “click here”

• Increases content more for popular pages with
many in-coming links, increasing recall of these
pages.

• May even give higher weights to tokens from
anchor text.

23

Robot Exclusion

• Web sites and pages can specify that robots
should not crawl/index certain areas.

• Two components:
– Robots Exclusion Protocol: Site wide

specification of excluded directories.

– Robots META Tag: Individual document tag to
exclude indexing or following links.

24

Robots Exclusion Protocol

• Site administrator puts a “robots.txt” file at
the root of the host’s web directory.
– http://www.ebay.com/robots.txt
– http://www.cnn.com/robots.txt

• File is a list of excluded directories for a
given robot (user-agent).
– Exclude all robots from the entire site:

User-agent: *
Disallow: /

9

25

Robot Exclusion Protocol Examples

• Exclude specific directories:
User-agent: *
Disallow: /tmp/
Disallow: /cgi-bin/
Disallow: /users/paranoid/

• Exclude a specific robot:
User-agent: GoogleBot
Disallow: /

• Allow a specific robot:
User-agent: GoogleBot
Disallow:

User-agent: *
Disallow: /

26

Robot Exclusion Protocol Details

• Only use blank lines to separate different
User-agent disallowed directories.

• One directory per “Disallow” line.

• No regex patterns in directories.

27

Robots META Tag

• Include META tag in HEAD section of a
specific HTML document.
– <meta name=“robots” content=“none”>

• Content value is a pair of values for two
aspects:
– index | noindex: Allow/disallow indexing of

this page.

– follow | nofollow: Allow/disallow following
links on this page.

10

28

Robots META Tag (cont)

• Special values:
– all = index,follow

– none = noindex,nofollow

• Examples:

<meta name=“robots” content=“noindex,follow”>

<meta name=“robots” content=“index,nofollow”>

<meta name=“robots” content=“none”>

29

Robot Exclusion Issues

• META tag is newer and less well-adopted than
“robots.txt”.

• Standards are conventions to be followed by
“good robots.”

• Companies have been prosecuted for “disobeying”
these conventions and “trespassing” on private
cyberspace.

• “Good robots” also try not to “hammer” individual
sites with lots of rapid requests.
– “Denial of service” attack.

30

Multi-Threaded Spidering

• Bottleneck is network delay in downloading
individual pages.

• Best to have multiple threads running in parallel
each requesting a page from a different host.

• Distribute URL’s to threads to guarantee equitable
distribution of requests across different hosts to
maximize through-put and avoid overloading any
single server.

• Early Google spider had multiple co-ordinated
crawlers with about 300 threads each, together
able to download over 100 pages per second.

11

31

Directed/Focused Spidering

• Sort queue to explore more “interesting”
pages first.

• Two styles of focus:
– Topic-Directed

– Link-Directed

32

Topic-Directed Spidering

• Assume desired topic description or sample
pages of interest are given.

• Sort queue of links by the similarity (e.g.
cosine metric) of their source pages and/or
anchor text to this topic description.

• Preferentially explores pages related to a
specific topic.

• Robosurfer assignment in AI course.

33

Link-Directed Spidering

• Monitor links and keep track of in-degree
and out-degree of each page encountered.

• Sort queue to prefer popular pages with
many in-coming links (authorities).

• Sort queue to prefer summary pages with
many out-going links (hubs).

12

34

Keeping Spidered Pages Up to Date

• Web is very dynamic: many new pages, updated
pages, deleted pages, etc.

• Periodically check spidered pages for updates and
deletions:
– Just look at header info (e.g. META tags on last update)

to determine if page has changed, only reload entire
page if needed.

• Track how often each page is updated and
preferentially return to pages which are
historically more dynamic.

• Preferentially update pages that are accessed more
often to optimize freshness of more popular pages.

